If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+15x-4.9x^2=0
a = -4.9; b = 15; c = +5;
Δ = b2-4ac
Δ = 152-4·(-4.9)·5
Δ = 323
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{323}}{2*-4.9}=\frac{-15-\sqrt{323}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{323}}{2*-4.9}=\frac{-15+\sqrt{323}}{-9.8} $
| -3r+-2=-5 | | u*4=32 | | 3^x-1=2x+5 | | 22+4y=−46 | | 4x+1.75=10.55 | | 10x+3=7x+1 | | z+63=11z–17 | | 2v-89=v-2 | | -1=4-f | | 2+3+20x=105 | | 2/9y+2/11=1/9y+5/3 | | -8=1-b | | 2x+48+2x=180 | | 24+8x=48 | | 6x-34=2x+14 | | 3d+3=64 | | 13u-1=5u+15 | | 2w-63=w+17 | | 10d+6=-4 | | 2x/9=12 | | w+50=3w-42 | | 3y+24=10y-60 | | 9*a=54 | | b+36=3b-16 | | 16/p=4 | | 5y-92y+7=0 | | -p+38+p+48=2(p+40) | | (5/x)+4=18 | | -p+38+p=48=2p+40 | | p*3=24 | | 3c=c+22 | | -13+-5-4x=-9 |